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Given a compact linear Lie group G, we form a natural expansion of the theory of the
reals where G and the graph of a logarithm function on @ live. We prove its effective
model-completeness and decidability medulo & suitable variant of Schanuel’s Conjecture.

——\>£f-§ m&m : 03CE0 {fumany), 03C10,03C6Y , 63 BLS, 226

Compact die growgs, ffeckiie amodel complibonus, o=-mincmaleby
Lang protonty , Schamuel Conjectine. .
1. Introduction .
Let K be either the field R of reals or the field C of complexes and for every
positive integer n, let A4(n, K) be the algebra of n X n matrices with entries in
K. Recently, Macintyre [12, 13] has explored the model theory of Lie groups &
and their associated Lie algebras A over K with the corresponding logarithm and
exponential maps. He mostly restricted himself to the case where G is a closed
subgroup of GL(n. K) for some positive integer n and A the corresponding algebra
of matrices. He points out various interpretability (and non-interpretability) results
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On The Mode!l Theory of the Logarithmic Function in Compaet Lie Groups

2. Compact Lie Groups

We first review basic facts in the theory of Lie groups as exposed in {17] and connect
them to the theory of linear Lie groups [18]. We emphasize, in particular, the role
of the exponential and logarithmic functions and we introduce in this way the
framework of this paper.

Recall that a Lie group G is a topological Heusdorff group which has a com-
patible analytic atlas (see [17, Chap. 2]). The space X of left invariant vector ficlds
on (7 is isomorphic as an R-vector space to the tangent space T1 (G} at the identity
L of G. The Lie algebra G of G is defined as T} (G) with its R-vector space struc-
ture and equipped with a Lie product coming from X. {One identifies the vectors
of T1(G) and the left invariant vector fields.) Each z in G is tangent at 1 to the
image of a unique 1-parameter subgroup 6, of G (a l-parameter subgroup is an
analytic homomorphism from R ingo G). This last description allows one to define
& tnap, called the exponential map, from G to G by eg(z) = 8-{1). One shows
that there is an open neighborhood U of 0 in G such that the exponential map
egly is injective and so it has an inverse denoted by logs. The Campbell-Baker-
Hausdorff formula relates, via this exponential map, the group structure on G and
the algebraic structure on G (see [17, Chap. 3]).

With any g € G, we associate an automorphism Ay of G:h— g-h-g~ %, which
induces a linear map on G; this allows one to define an operator Ad from @ to
GL(G) which is called the adjoint representation of G. Given a Lie group G, we
can equip its tangent space 71{G)(= §G) with an inner product and transport it at
Ty(G) for any g € G and show it is & Riemannian metric. This metric is said to be
lef {respectively right) invariant if the left (respectively right) translation on G is
an isometry (see (17, 4.2]) and invariant if it is both left and right invariant. This
last property characterizes the compact Lie groups, namely a Lie group & has an
invariant Riemannian metric if and only if Ad(G) is relatively compact in GL{G)
(see [17, Theorem 4.2.3]).

As a corollary, one obtains that any compact Lie group possesses an invariant
Riemannian metric (see [17, Corollary 4.2.5)) and if G is a connected compact Lie
group, the exponential map is surjective (see [17, 4.3.5]).

Let G be a compact connected Lie group. Using the adjoint representation, and
choosing an inner product on G such that Ad is an orthogonal representation, we
get that Ad(G) C O(G), where O{G) denotes the group of all linear transformations
on G which are orthogonal with respect to the corresponding inner product.

We have the following characterization of compact Lie groups among compacht
topological groups, due to Pontryagin. A compact topological group is a compact
Lie group if and only if it is isomorphic as a topological group 1o a closed subgroup
of some orthogonal group O(rn) if and only if it is isomorphic as a topological group
to a closed subgroup of some unitary group U/(n) (see [17, Theorem 6.1.1]).

Recall that U(1) is called the one-dimensional torus T' (or the circle group); &
torus is a group of the form T, for some n € N — {0}. These are the compact,
connected, abelian Lie groups (see [17, p. 77]).
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8. L’Innocente, F. Point & C. Toffalori

The compact Lie groups G are classified as follows (see [17, Theorem 6.4.5]). Let
Gp denote its identity connected component. (Since G is compact, this subgroup is
necessarily of finite index). Every compact connected Lie group Gp is analytically
isomorphic with a unique group of the form (Tp x Gy X x G’m)/C' where Gg
has 2 finite covering Gy such that Gy /C =~ Gy with C a ﬁmte central subgroup,
I is the identity component of the center of Gy (and so a orus) and each Gj,
1 <4 < m, is a compact, connected, simply connected simple Lie group and so
isomorphic to either SU(n}, Sp(n), Spin(n) (a covering of SO(n)) and Gy, F,, Fg,
Er, Eg (see [17, pp. 137, 138]). The proof of this theorem uses the fact that the
adjoint representation of Gy is a direct sum of irreducible ones. So the Lie algebra
G of G is a direct sum of its center and simple ideals of G and the center of G
corresponds to the connected component of the ¢enter of G and the simple ideals to
the normal connected simple subgroups of G. Then, one shows that the map from
Tox G1 X+ + % Gy t0 G sending (Z0,...,%m) t0 Tg-... Ty, is equal on & neighbor-
hood of i;he identity to eg 0logy, o &, «...xg,,» Where logﬂmalx .x&,, 18 simply the
inverse on & suitable neighborhood of the exponential map By % Gy e X iy

We will deal with some of these compact Lie groups, following the research
direction opened by [13] and-described in our introduction. We will consider these
groups in a first-order setting, namely in an expansion of the field of real numbers
with a predicate for the graph of a logarithm function Log we are going to define
on them.

Recall that a real Lie group of degree n is any Lie group which is topologically
isomorphic to & subgroup of GL({n, R}. As reviewed above, any compact Lie group
is-a real linear Lie group.

Even if we plan to work in an‘expansion of R, it is convenient for us to recall
how the exponential and logarithmic functions, exp and log respectively, are usually
defined on the Lie algebra M(n, K} of n x n matrices over the field K, when X is
either the field R or C. Incidentally, let us point out that we are denoting by log
(with a small {) this logarithmic function and by Log (with a capital L) the map
we are going to introduce and study. We endow M(n, K) with a norm ||-| (for
instance, the operator norm or the Frobenius norm {(i.e. the sum of squares of the
absolute values of the entries of the ma.tnx) and define exponential and logarithm
functions on matrices as follows:

(1) exp: M(n, K) — GL(n, K) by exp(z) = ¥, =,
— k- —_— k
(2) log: By(I) — M(n, K) by log(a) = g2, Sfe=i,
where [ denote the identity matrix and By (Z) the ball of radius 1 and center 1.
These functions heve the following properties. Let Ny be the connected compo-

nent of 0 in the open neighborhood exp~(B1(14)) of 0. Then, we have that {see
(6, Proposition 5.3]}:

(1) for all z € Ny, log(exp(z)) = =,
{2) for all z € By(14), exp(log(z)) = =,
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Proposition 2.1. For every A and G as listed before, the theory of (A, G, R.exp)
8 undecidable.

Proof. The iutegers can be defined as the clemnents of the ficld B that fix the keruel
of exp setwise. Their riug structure is just that imherited from the field 13, (=]

Now, we come back to the expansions of B we are interested i, Let A be one of
the Lie algebrus Listed above, Observe that botl: 4 aud its corr cspondivg Lie group
are definable in the ordered field of reuls R ;= (R, +,—, -, «,0,1). To see this, just
recall that T can be viewed us 4 subset of 122 and it ring atructurc can be given by
the graplw of the addition, defined componentwise, and the multiplicatiorn, defined
by: {a, ) (e ¢) = (ac—bd, ad+é<) Then su nxn matnx over R can be represented
a5 an.orderdlg s  represented ag an

71-:5 .
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34

ordered 2n2 —t.uplc of real numbcrﬂ Snmla.rl) an 71 X 7t matrix over the guaternions
can be viewed as an ordered 4n®-tuple of reals. Matrix addition and multiplication
cazl be again defined in a natural way. This ultimately allows to define §U (), SO{n)
sud Sp(n) in R, both us scts, indeed subsets of a suitable direct power of R, aud us
groups aud thic ssine holds for the corresponding Lie ulgebras, Tlis approsch which
carl also be formalized in a first-order setting, has been described in {13, See. 2]

Firgt, we note that the expauwion (ll;‘.,t.xp “a) by the graph of the exponcutial
wap exp restricted to one of the Lic algebras A listed above, is undecidable.

Proposition 2.2. The theory of (R,expl 4} i undecidable.

Proof. First, let us prove it in the mitary case. Observe that su(x) includes the
diagonal martrices of the form

D{0) = diag(in, —in,0,...,0)

with 8 1 real, us an #-definable subset. The kernel of exp regtricted to these matrices
gives a copy of the integers, where addition cau be defined vis matrix addition, and
multiplication ¥ia watrix wultiplication times the watrix D(£) — here 27 can be
defined as the least rewl ¢ > 0 such that exp(2(8)) is zero. In this way; the ring of
integers is definable fn our structure, which implics undecidability.

The sywplectic case can be treated in a similar way, while for the orthogonal
case one can refer to the block-disgonal matrices bue havi ing the first 2 x 2 block of

the form
0 —
7 0

with # u real and the other blocks cither (g ::) or, for an odd n, a further 0. ]

So, let uy turn now eur attentiou to the logaritlun. We will need the following
description of the lincar Lie groups SU(n), SO(n) sud Sp(n).
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1 7 € N — {0}}. a function Log everywhere defined and which coincides with the
2 fimetion log on a veighhorhood of | and such thar for any n € G, exp(Log(a)) = a. -
3 This function Log will have the expected properties (see Lemma 2.5) and in Sec. 3,
4 we will show that it is definable in a Pfaffian expansion of B,
5 Case 1: SU(n).
s Let @ € SU(n), o' as in Proposition 2.3(1). Thus the coujugate ¢’ =ul . a -y
7 of ¢ with a suitable matrix « € SU (n) is disgonal, and indeed o = diag(ey. . .., €n)
8 with e = e for k= 1,...,n and [ick<ner = 1. Take —7 < € < 7 for overy
9 =1...,n—1aud Y} e, 0 =0. Now put
10 Log(a') = diag(6;....,i6,). .
11 Then put
12 Log(n) = Log{u-a’ -1 ') := u.- Tog(a')-u L
13 Observe that, if & = diag(i¢, .... i), then 0’ = exp(}) where exp is the matrix
14 exponential map from rhe marrix space M (n,T) to GL(n,C) as defined in Sec. 1.
15 Moreaver,
16 a=u-a-u '=u.-cxplt) v ' =cxplu-t-u 1y
17 (see 18, Proposition 3, p. 4]), whence it akes semse to introduce Log(a) in the
18 way we have doue it,
19 Notice that z and o’ are not unigue. However, take amother watrix ¢ in SU(n)
20 guch that o’ =¢7'-a -t is also diagonal, Then ¢ = divg(co@ys - - -, togny) for some
21 peruutation o € S, and the conjugation with w=! -+ send a' to o, It follows that
22 ™'t i u product of iuvolution matrices, whonee ¢ 38 obtained by couposing ¢
23 with thiy product. For exampie, when . = 2 oue may cowpose u with ((,J ,],) Then
24 the conjugation with =" - ¢ also seuds ¥ to b7 = ding(itlz(1). - .. 10, (n)), where
25 —% < B9 <mfor 1 < oft) < n and 21 <ngn Fatr) = 0. Thus, it s casily seen that
I - - T =gy,
AQ: Kindly lave 3
check the 000 4 Sp(n). By Proposition 2.:*3)., a matrix a in 8p{n) is conjugate over C ro
renumbering. a diagonal matrix of size 2n X 25 with entries e e W (| <k < n), whence we
PP ease, Goave can repeat the same argnments as in Case 1 and inrraduce a similar Log.
tbasibund {¢isg 5 Case 8: 50(n).

31 Now, we refor to (2) in Proposition 2.3. Every o € 50(n) iz conjugate in SO(n)
32 o a matrix @’ which is bloek-diagonal with 2 x 2 blocks of the form

, cos(8)  —sin(d)
33 Q' = N
sin(8)  cos(9)

34 (with —r < 8 < &) sud possibly 4 further T x 1 block equal 4o 1. Note that cacli 2x 2
35 block is dingonalizable over the fiedd C of cowplex uumbers. It suffices to conjugate

1350055-8
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On The Model Theory of the Logarithmic Function in Compact Lie Groups

. N N o 1 -
it with the unitary matrix ¢ = (7] 1), whose inverse is ¢~! = Lot i ~3)- One

gets in this way diag(e®, e %), On the othel hand, it is easy to see that
¢- diag(i, —i8) - ¢! = (g _g)

Agsume momentarily n = 2, that is, @ € SO(2). Hence a consists of a single 2 x 2
block as before, and indeed a is just (g:’:((g)) gg;) for some 8. As said, ¢™1-q.c=

diag{c’®, 7). Define Log(a) as

0 —
- diag(i8, —if) - ¢! = .
¢ - diag(if, —i8) - ¢ (g 0)

Observe once again that exp(diag(i8, —i8)) = diag(e®®, e ), so that

0 -8 # o0\ _ w o0\
=exp| ¢- et =¢- e
“Plo o PVo - “Plo _is

_ o (7 0 i ([eos(8) —sin9)
- 0 e ¢ = sin(@)  cos(d) '

For an arbitrary n > 2 with n even, we proceed block by block to build and manage
@'. For an odd n, we take 0 as a last block in the logarithm of a’. As in the unitary
case one checks that the choice of v’ does not affect the final value of Log{a). <

Now, we state some basic properties of the function Log, the first one directly
following from the definition of Log given above.

Lemma 2.5. Let n be an integer > 2, G be one of the wmpart Lie groups SO(n),
SU{n), Sp(n), A be the corresponding Lie algebra:

(1) Log maps G fo A.

(2) Log(I) eguals the zero matriz.

(3) For every a € G, exp(Log(a)) = a.

(4) For a1 and ay commuting matrices in G, Log(a, - as) ~ (Log(a1) + Log(as)) is
the conjugate of
s a diagonal matrix whose diagonal entries are integer multiples of 2mi in the

unitary and symplectic cases,

¢ g block diagonal matriz with diagonal 2 x 2 blocks of the form

0 —2hr
2hm 0 )’
h an integer, and possibly a 1 X 1 block of the form 2h’7r with #' again an

integer, tn the orthogonal case.

In particular, for every a € G, —Log(a) coincides to Log(a)~! modulo the
conjugate of o matriz as just described.

1350055-9
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1 its ring structive given in the nsual definable way. Then » X n-matrices over C
2 (respectively over R} can he regarded as 9n*-mples {respectively n>-tuples, 4n-
3 tuples) with coefficienrs in R and one can view the logarithm map as a subset of
4 R¥™ (respectively R?", R¥°)  that is, its graph , so as a 4n-ary (respectively
5 2n%-ary, 8n?-ary) relation on R. We will denote the relation obtained in this way
6 hy Log | (, the corvesponding expansion of B hy (R.Log ! ¢!) and the firsi-order
7 langnage of this structnre hy Ligg. Thus Lr,, is the language of ordered rings
8 enriched by a dn’-ary (or 2n%-ary, or 8n%-ary, according to the case we are dealing
9 with) relation symbol.
= We will denote by ran™! the inverse of the tangent function on |—#/2,=/2] and
AQ: Please by rran™! its vestriction to the interval 0, 1], rtan™" = tan=" * [0,1]. We will also
check the denote by rtan™"' rthe extension of this restricted tan™ ta the whole R
sentence it PRt idert o R——a--3 i i e
seems to be s HE s Sl g
incomplete. S0 L jrondié a common. foat ordn.
16 Using trigonometric ideutitios, we observe that tle function tau—" is quantifier
17 free O-definable in (R, rtan™"). Nacly, tan"(—z) = —tan~ (1), tau~' (1) = = /4,
18 tan” ' {2") = /2 — tan~" (z) for x > 0 and tan™! (77) = —%/2 — tau"(x) for
19 & < 0. Couversely, rtun™" is 0-definable fu a trivial way in (K, tan=1).
20 In order to Lave a continuous function on R, it is somethnes couveuient to
21 Identify the function tan™" restricted to [0, 1] with the function tau—! (122). Even
22 rhough in IR these two functions are different, the strictires (R.rtan 1)and (R, ze
23 Tan 1(ﬁ_!?,)) have the same {existentially) definable sets (see the itroduction of
24 [21]). The model theory of the expansion of the field R with tan= {1iz) relies on
25 the fact that this function belongs to the following Pfafian chain (see 21]: we will
26 adopt in the following the notation of that paper).
27 First, let us reeall what s o Pfaffian chsin @y, .... G, on an open (O of IR, of
28 degree d > L. It is & sequence of real analytic functions Gy, ... : G 10 O sutisfying
29 differential eguations %(—i* = pi(x. G1(r), ... .Gi(x)), for i = 1,...,m, where pi €
Q) Please 30 Rr, gy, ...,y are polynowials of total degree < d.

S . ) e i a1 vties Frer elenrstcms
heck any 31 (.-(’J’Inl&%i t;uf.!c tu our' setting, sot Ga(w) = tuu (177%). Let us denote the deriv
rissin g 73] e g7 I Now consider:
haracter? _

Vo - 33 (1) Gy(x) = —1»[1—1.,, whenee the derivative §s G = ~2z - G2, and one can put
3 (e, y) = —22 -y _
2 bj ', Mowr 35 (2) Ga(x) = 1_1(,1 + wleaiee the derivative is Gy = —2G3-Gy - &) =42 G5 . ¥, 8o
97¢ 36 that one can put pa(e, g, 2) = 1o - 3 - 224
37 (3) Hually Gs(x), whence the derivative s G = Gy - () = =22 - Gy - GF and one
38 can put psla, y,z) = —2x .2 - z.
39 This is a Pfaffisn chain, Note that the total degrees of the polynomialy iu it do

not execed 6.

1350055-12
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1 where § = (p1,...,pn) and § = (51, ..., 8,) are finite tuples of non-negative integers
2 ranging over finite sets of indexes, P and § respectively, and the by are in Z.
3 Let R* be the multiplicative group of the field of real numbers R and R>? its
4 subgroup consisting of the positive elements in R*. We will be interested in certain
5 subgroups of R>? (and hence of R*) and in some finite direct powers of them. The
6 key fact about these subgroups is that they satisfy the so-called Lang property [10], -5>€t also L 1]
7 {we are going to state it within a few paragraphs). — go'b ERin Eind
8 These subgroups are obtained in the following way. Let = > r be as before, ,.éiwhlm
9 €= (e1,...,cy) a tuple of positive integers. Thus look at (the divisible hull of) the
10 subgroup I':= Ty, . g, generated by 8 :=tan"(c1),...,0, := tan~!{c,). Observe
11 that, as ¢; > 0 for every 1 < ¢ < n, the same is true of §; for I < i < r. Then
12 I' is a finitely generated subgroup of R>. Notice also that we could have taken
13 arbitrary (possibly zero or negative) integers ¢i, . .., ¢, as well. However, due to the
14 trigonometric identity tan~!{—z) = —tan~!(x) the case when some ¢; is negative
15 can be easily reduced to ours (with non-negative, and even positive, ¢y, ..., Cu )
16 Of course the equation g{cy,...,Cn¥1,..., ) = 0 defines a variety of R”. Let
17 us denote it by V' = V(q, &).
18 Up to re-indexing 6,...,8,., we may also assume that 8;,...,8;, k¥ < r, are
19 multiplicatively independent and that & is maximal with that property. So there
20 exists N € N such that fgyq,...,6, € (9;‘*’ veeny Bglw } (bere, for & a positive real and
21 M a positive integer, 8% denotes t}:.e unique real Mth root of ). Then any element
22 of I' can be written as 8,2"1 e 19,:‘& for some b;,...,br € Z. In particular let us
23 put, fork+1<h<n, 0= 9155" - G:ﬁ& for some suitable api,..., a5k € Z.
24 We will say that ' is effectively presented in terms of c1,..., ¢, if the integers
25 ko N, apy,...,apk (k+ 1< h < n) can be effectively found from (cy, ..., c,).
26 Next observe that looking for the zeroes of our family of “polynomials”
27 Qi(cl‘---’cmyla'“ayr)
28 in T is the same as looking for the zeroes in T' of the single polynomial
2 Q(Cle-“’Crw-wcynyls-“-yr)'
30 Accordingly consider this polynomial g(cy,...,cn 41, %) € Zl1,.... %) Fora
a1 given 3 =(s1,...,8.)} € 5, let p(8) = Y 5ep bp,sch’ - .. .- & be the coefficient of the
32 monomial ¢’ -... .y in it.
33 The support § = 8(g, &) of this polynomial with respect to g and & = (e1,...,¢,)
34 is the set of tuples & such that the coefficient p(g) is not zero. Notice that S is
35 finite and indeed its size is bounded independently of ¢;,...,¢, and I'. A {finite}
36 partition Py of & 1= | |;<4(5) St of this set of exponents is said to be compatible with
37 an element ¥ € I'" if it satisfies for all indexes ¢ < (%) the equality >3 ¢ p(5) -
38 it ... -8 = 0. Clearly even the size of the {finite) set of these partitions is finite
39 and bounded independently of I'. A partition P5 of § is maximal compatible with
40 4 € I'*, if any strictly finer partition of S is not compatible with 7.

1350055-16
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On The Model Theory of the Logarithmic Funciion in Compact Lie Groups

Let Hp, be the subgroup of (R*)" defined by the system of equations

’

£-3 Sy 8' 87'
Y Y = e

where 3,5 range over the same & (¢ < £(7)) and 5 # 7.

The group I'" has the Lang property (see [10, Theorem 2)), i.e. given the variety
V, there are only finitely many pairs (7, P) (where 4 € I'™ and P = Py is a partition
maximal compatible with ¥} such that VNI™ = {5 ) ¥-(Hp NI7). (In particular,
if the rank of I' is equal to r, then Hp NT" = {1}.) Incidentally, let us recall that,
in order to show the finiteness of the mumber of such (7, P), one uses the finiteness
of the number of non-degenerate solutions of a linear recurrence equation, namely
an equation of the form >, d; -9 = 0 {or = 1). Here the coefficients d; are in Z and
one looks for solutions g; in RN T. In our particular case, the number of solutions
of such linear recurrence equation can be bounded just in terms of r and the rank
k < r of the group T', and hence in terms of r (see [3]). Indeed the number of cosets
of the form 7 - Hp with P = P., and hence vy satisfying the linear relations

D o p(E) - =0, t<HF) (%)
FES; -

(but annihilating no proper sub-sum) is bounded in terms of the rank ¥ < r of I’
and of the number of terms in the sum (which depends on the variety V).

So there exist a positive integer £, £ tuples of integers (m;1,...,mj-) of the form
mu=¢%—& (i=1...,7r7=1,..,4¢ 57 io the same S; with ¢ < £(¥)) and
g1,-..,g¢ € T of the form g; = [[i_, %, such that, for every (u1,...,%) € T,

{(u1,...,% is in VNT" if and only if it satisfies

g1

Ty e YT =g (3ex)

for all j in some suitable subset of {1,...,#}. Indeed note that, if (u;,...,4,) is a
tuple of I'" satisfying (i), then

(a1, ey we) - (s W)

satisfies TT7_, (us - 41y = 1 and so is in Hp.

Note that {see [3, 10]) one can bound £ and the integers m;; only in terms of
the exponents of noutrivial terms occurring in the polynomial ¢ defining V, via
€y .., Cnadnd of the rank of T -

‘We will say that the Lang property is effective if the elements g1,...,9: € I (and
the corresponding subsets arising in the way described before) can be effectively
found in terms of {61,...,0%).

. 24 2kt
For every i = 1,...,r write each y; := ;¥ -...-@,~ , for some oy4,...,08; € Z.
Then for every 7 =1,...,¢
Ty asmyy Xi @i Mgy
gj - 91 MR ak N .
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30 in order to check whether the tuple § (that is, (tan=(c;), ..., tan~" {cr))) satisfies
gz(¢,8) = 0 for a given z € Z", it suffices to test that a linear system made by
equations like

k n r
/\ (Zf TMjf +‘-Z Qhf - M * 2p = Zoﬁ . mj,-)
f=1 h=k+1 i—1
(where j ranges in some suitable subset of {1,...,¢}) can be solved with respect to
the Qfi.

Here, we have a free choice of Zk+1y-+., 2, end then 21,...,2; are uniquely
determined.

In conclusion, we can state the following proposition.

Proposition 4.5. Let n > r be non-negative integers, q(x1,...,%n, Y-, Yr)
¢ polynomial with integer coefficients. Consider the corresponding family gz
for 2 € Z". Fiz a tuple ¢ = (c1,...,6,) of positive integers and let T' =
th—l(cl)‘m.mnq(c"). Assume A

(1) shet the Lang property is effective for the subgroup T,
(2) and that T can be effectively presented in terms of (€1,...,6n).

Then therc is a procedure deciding, for every tuple z in N, whether
gle, ... cn tan™ )™, ., tan" {e.)*) =0

or not.

5. Effective Model Completeness and Decidability

In See. 3, we recalled that the theory of (R, rtan!) is model complete and
o-minimal. But we can say even more. In fact, by using Wilkie’s first main theorem
of the model completeness of restricted Pfaffian extensions of R [21] and Macintyre-
Wilkie’s strategy in [14], or Gabrielov’s theorem (see [4]) on complemnents of sub-
analytic sets and the subsequent work of Gabrielov—Vorobjov on effective versions
in the case of restricted sub-Pfaffian sets, we obtain the following proposition.

Proposition 5.1. The theory Tpyan—1 is effectively model complete.

Actually the latter approach gives better effective estimates, provided one can
decide existential sentences expressing whether a Pfaffian system of equalities and
inequalities has a solution. See sbout that the enlightening discussion in [12, Sec. 4],
where the two approaches, by Macintyre-Wilkie-Servi and by Gabrielov—Vorobjov,
are compared. In any case, we get the following corollary.

Corollary 6.2. For every G = SU(n),S0(n), Sp(n) the theory Trog is effectively
model complete.

1350055-18
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Using all these properties, one writes down in £, a list Taa— of first-order
properties of models of Thyun-1:

(1) K is an ordered field.

(2) K is definably complete (namely, every bounded (parametrically) definable sub-
set has a supremum).

(3) (rtan~')'(2) = 17 when 2€]0,1[, rtan™'(0) = 0, rtan~}(1) = =,
rtan~(z) = 0 when z € R — [0, 1].

(4) {The restricted Khovanskii property) For every n, N € N,is a positive integer
p(n, N) such that, if pr,...,pn € Z21,..., T0, 415+ - ,yﬁ are polynomials of
degree at most N and for every i = 1,...,n, f; i8 the function in T, , determined
by pi (in the sense that fi(@) := p;(&,rtan—2(a)) for all & € [0,1]"), then
|Vmg(f1! e :fn)[ < “("WN)‘

(5) The scheme of sentences ensuring & Puiseux expansion of functions of My (K),
7 > r in N. This is the analogue of scheme A.7 as stated by Macintyre-Wilkie in
[14], see also [19, 4.7.20); it isTeferred to as the effective Lojasiewicz Inequalities
by Macintyre in [12, Theorem 4.2].

Finally, let us consider the decidability issue. First, let us state a property
analogous to the weak Schanuel’s Conjecture (WSC) in the case of the exponential
function in [14, Sec. 5).

WSC,: There exists an effective procedure which, given r < n € N and f =
(fis.. fu) and g in Ty ., produces a nonzero natural numberq := n(n,r, f, g) such
that for alla € [0,.1]" x R*™", ifa € V™8(f), then either g(g) = 0 or [g(a)| > v~ .

Proposition 5.4. The following conditions are equivalent:
(i) the theory Trpan-2 5 decidable;

(i) the theory Tyon—1 is decidable;
(iii) WSC, holds.

. Proof. The equivalence between (i) and (ii) is trivial. So let us compare (i) and (iii).

Firgt, assume WSC,. By Proposition 5.1, given any sentence in £, one can find
in an effective way an existential sentence equivalent to it in T}.,,—1. Then it suffices
to show that the existential theory of (R, rtan—!) is recursively enumerable. To do
that, one proceeds as in the proof in [19] of the implication (4 = 1) in Theorem
4.6.8, using WSC,;, Lemma 5.3 and the fact that the rings M, , are noetherian

differential rings.
Conversely, WSC; is a consequence of the decidability of Tiyn-1. This can be
shown by the same argument as in {14, Sec. 5]. D

Corollary 5.5. Modulo WSC, the theory Ti.og i8 decidable for every G = SU(n),
SO(n), Sp(n).
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1 Recall that Schanuel’s Conjecture for the complexes states that if ay,...,
2 ar € C are linearly independent over , then the transcendence degree of
3 ay,-.-,ap, €, ..., €% over Q, trdegg(a,....an, €%, ..., e*), is > n.
4 Note that, if p(Z,5) € Z[Z,§] with T = (21,...,2,) and § = (y1,...,) for
5 n > r in N, we can rewrite in (R, rtan—') the simple term p(Z, 7(x1),...,7(z,)) as
6 follows. For 1 < j < r, we can assume z; € [0, 1] and replace tan—{z;) by y; (with
7 y; € [0,%]) and x; by tan(y;) (recall that r(x) = 0 whenever = is out of [0, 1]).
8 Then, we use the identity
el — eV
9 tan(y) = W
10 In this way, we transform our simple term of £, into a term of the form
1 gle™, ... e 7)
12 (Z a new suitable string of variables) with coefficients in Z(3).
13 Moreover, note that i = ¢/ and that if n-y = 37, nn - y» with n € N and the
14 ny in Z, then %) =TT, eilrn-yn),
15 Let us denote by SC the following statement.
16 SCr: Letry,...,rn € R be linearly independent over Q. Then the transcendence
17 degree over Q of Q{r1,...,7n, €™, ...,6"™) is > n,
18 Clearly this condition directly refers to the general Schanuel’s Conjecture for C
19 and in this sense it is easier to understand than WSC,.
20 Proposition 5.6. Modulo SC, the theory Toan-: 48 decidable, whence Tig,-1 48
2 decidable and Tt0g 18 also decidable for every G = SU(n), SO(n)}, Sp(n).
22 Proof. As in [14], using SC, one shows that a recursive subtheory of Tyan-1 is
23 complete. O
24 Corollary 5.7. SC,. implies WSC,..
25 Proof. Apply Proposition 5.4. m|
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